53 research outputs found

    Sense of coherence, academic performance and professional vocation in Certified Nursing Assistant students

    Get PDF
    BACKGROUND: The sense of coherence (SOC) of the salutogenic health model explains why people in stressful situations are able to maintain or even improve their health. There are some studies on which measures are more effective to reduce stress in Nursing assistant students. There are no studies that link SOC with the two key aspects in the prevention of stress in Nursing assistant students: the motivation of pursuing this profession and the academic level. OBJECTIVES: To explore the salutogenic paradigm among Nursing assistant students in a region of Spain (Comunitat Valenciana). DESIGN: Cross-sectional, analytical and exploratory study carried out in 2016. METHODS: Students of the first year of Nursing Assistant certification. Self-administered questionnaire to collect the variables: Sense of Coherence (SOC-13 instrument); professional vocation; Self-reported grades of the academic record. RESULTS: The mean score for the total SOC measurement was M?=?56.38 (SD?=?12.236; 71). Regarding the SOC components, the average score was for Manageability M?=?16.45 (SD?=?4.53; 24); Comprehensibility M?=?19.27 (SD?=?5.642; 30) and Meaningfulness M?=?20.65 (SD?=?4.48; 23). Students who lived in rural environments presented a weaker SOC (M?=?54.05), compared to those who were located in urban environments (M?=?56.83) and large cities (M?=?56.15). The students who reported a choice of studies motivated by professional vocation presented a stronger SOC, scoring also a remarkable academic performance (p?<?0.05). CONCLUSIONS: Strong levels of SOC in Nursing assistant students, are related to a greater motivation to study something desirable, and to obtaining high academic performance, despite being a demanding and high-stress profession. Therefore, a strong SOC seems to contribute to being more resistant to stress. The environments that provide and facilitate greater external resources such as health, education, culture, association, leisure and recreation, for the community, have higher global levels of sense of coherence

    Gene Expression Integration into Pathway Modules Reveals a Pan-Cancer Metabolic Landscape

    Get PDF
    BIO2014-57291-R and SAF2017-88908-R from the Spanish Ministry of Economy and Competitivenessgrant PI15/00854 from the FIS“Plataforma de Recursos Biomoleculares y Bioinformáticos” PT17/0009/0006 from the ISCIII, cofunded with European Regional Development FundsFP7-PEOPLE-2012-ITN MLPM2012EU H2020-INFRADEV-1-2015-1 ELIXIR-EXCELERAT

    Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome

    Get PDF
    Spanish Ministry of Economy and Competitiveness grant BIO2014–57291-RSpanish Ministry of Economy and Competitiveness grant SAF2017–88908-R“Plataforma de Recursos Biomoleculares y Bioinformáticos” PT13/0001/0007EU H2020-INFRADEV-1-2015-1 ELIXIR-EXCELERATE (ref. 676559)EU FP7-People ITN Marie Curie Project (ref 316861)

    High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes

    Get PDF
    This work is supported by grants BIO2014- 57291-R from the Spanish Ministry of Economy and Competitiveness and “Plataforma de Recursos Biomoleculares y Bioinformáticos” PT13/0001/0007 from the ISCIII, both co-funded with European Regional Development Funds (ERDF); PROMETEOII/2014/025 from the Generalitat Valenciana (GVA-FEDER); Fundació la Marató TV3 (ref. 20133134); and EU H2020- INFRADEV-1-2015-1 ELIXIR-EXCELERATE (ref. 676559) and EU FP7-People ITN Marie Curie Project (ref 316861)

    Fibroblasts activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses

    Get PDF
    Background. Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three cancer-prone genodermatoses whose causal genetic mutations cannot fully explain, on their own, the array of associated phenotypic manifestations. Recent evidence highlights the role of the stromal microenvironment in the pathology of these disorders. Objectives. To investigate, by means of comparative gene expression analysis, the role played by dermal fibroblasts in the pathogenesis of RDEB, KS and XPC. Methods. We conducted RNA-Seq analysis, which included a thorough examination of the differentially expressed genes, a functional enrichment analysis and a description of affected signalling circuits. Transcriptomic data were validated at the protein level in cell cultures, serum samples and skin biopsies. Results. Interdisease comparisons against control fibroblasts revealed a unifying signature of 186 differentially expressed genes and four signalling pathways in the three genodermatoses. Remarkably, some of the uncovered expression changes suggest a synthetic fibroblast phenotype characterized by the aberrant expression of extracellular matrix (ECM) proteins. Western blot and immunofluorescence in situ analyses validated the RNA-Seq data. In addition, enzyme-linked immunosorbent assay revealed increased circulating levels of periostin in patients with RDEB. Conclusions. Our results suggest that the different causal genetic defects converge into common changes in gene expression, possibly due to injury-sensitive events. These, in turn, trigger a cascade of reactions involving abnormal ECM deposition and underexpression of antioxidant enzymes. The elucidated expression signature provides new potential biomarkers and common therapeutic targets in RDEB, XPC and KS.This study was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2013-43475R, SAF2017-88908-R and SAF2017-86810-R); from Instituto de Salud Carlos III and CIBERER, cofunded with European Regional Development Funds (ERDF) (PT13/0001/0007, PI14/00931, PI15/00716, PI15/00956, PT17/0009/0006 and PI17/01747); and from the European Union (HEALTH-F2-2011-261392 and H2020-INFRADEV-1-2015-1/ELIXIR-EXCELERATEref. 676559). Additional funding from Comunidad de Madrid (AvanCell-CM S2017/BMD-3692); Catalan Government (AGAUR 2014_SGR_603); ‘Fundacio' La Marató de TV3, 01331-30’; CERCA Programme/Generalitat de Catalunya; and ‘Fundación Científica de la Asociación Española Contra el Cáncer’, Spain

    Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea

    Get PDF
    The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments

    Effect of viral storm in patients admitted to intensive care units with severe COVID-19 in Spain: a multicentre, prospective, cohort study

    Get PDF
    Background: The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. Methods: We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero ([removed]2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. Findings: 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16–0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26–0·57; p[removed]11 página

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access
    corecore